Abstract

The implementation of space charge measurements based on thermal perturbation on thin films requires an improvement of the temperature distribution estimation at the surface and in the depth of dielectric materials for getting reliable space charge profile measurements. Absolute temperature variations are needed, both in time and space. The present contribution addresses surface temperature measurements based on either thermoelectric or bolometric effects. Both responses have been measured on coppercoated silicon nitride layers and gold-coated polypropylene films heated with a Nd:YAG laser pulse. It is shown that high temporal resolution thermal response can be obtained through the bolometric response and that the information appears nearly independent on the nature of the coating electrode. The setup developed provides good signal to noise ratio for heated electrodes of a few ohm resistance. Strategies are still to develop to get the temperature profile in the insulating sample layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call