Abstract
AbstractTropical cyclone (TC)‐permitting general circulation model simulations are performed with spherical geometry and uniform thermal forcing, including uniform sea surface temperature (SST) and insolation. The dependence of the TC number and TC intensity on SST is examined in a series of simulations with varied SST. The results are compared to corresponding simulations with doubly periodic f‐plane geometry, rotating radiative convective equilibrium. The turbulent equilibria in simulations with spherical geometry have an inhomogenous distribution of TCs with the density of TCs increasing from low to high latitudes. The preferred region of TC genesis is the subtropics, but genesis shifts poleward and becomes less frequent with increasing SST. Both rotating radiative convective equilibrium and spherical geometry simulations have decreasing TC number and increasing TC intensity as SST is increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.