Abstract

Bisphenols (BPs) are a series of widely used endocrine disruptors, which potentially harm the environment and human health. In this work, a novel Z-scheme TiO2-BiVO4-PI heterostructure was synthesized, characterized, and used for the simulated sunlight-driven photoelectrocatalytic degradation of BPs. Due to the existence of surface-surface contacted direct Z-scheme between BiVO4 and PI, holes were concentrated on the valence band of BiVO4 and electrons were concentrated on the conduction band of PI, resulting in a stronger redox activity. All six BPs exhibited appreciable degradation following the order of bisphenol A (BPA, 93.5%) > bisphenol B (BPB, 92.7%) > bisphenol AP (BPAP, 85.6%) > bisphenol F (BPF, 75.9%) > bisphenol AF (BPAF, 69.8%) > bisphenol S (BPS, 39.2%), within 120 min under the optimal condition. In the process of degradation, superoxide radicals (·O2−) and hydroxyl radicals (·OH) played dominant roles, and the intermediates of BPs degradation were mainly formed via the substituent shedding or C–C bond breaking of phenol ring, hydroxylation, and ring opening of phenol ring. The ECOSAR program was used to analyze the changes in the toxicity of the intermediates, and it was proved that the toxicity showed a decrease trend during the degradation process. This study provides a Z-scheme mechanism for TiO2-BiVO4-PI, which can degrade BPs and reduce their toxicity effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.