Abstract

Femtosecond broadband sum frequency generation (SFG) spectroscopy is applied to surface studies of the archetypical non-centrosymmetric semiconductor GaAs (001). Azimuthal angular dependence studies in reflection geometry under eight possible polarization configurations reveal strong surface-bulk interference owing to heterodyne amplification. The crystal symmetry and the surface quadrupole contributions need to be considered to properly interpret the resulting nonlinear spectroscopic signals. In addition, over bandgap excitation by one of the incident beams brings the semiconductor surface to a transient excited state, enabling enhanced sensitivity of broadband SFG to probe the surface electronic properties of non-centrosymmetric semiconductors. These findings suggest that this technique can be generally applied to surface studies of other non-centrosymmetric crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call