Abstract
Oxygen vacancy concentrations are critical to the redox/photocatalytic performance of nanoceria, but their direct analysis is problematic under controlled atmospheres but essentially impossible under aqueous conditions. The present work provides three novel approaches to analyze these data from XPS data for the three main morphologies of nanoceria synthesized under aqueous conditions and tested using in vacuo analytical conditions. First, the total oxygen vacancy concentrations are decoupled quantitatively into surface-filled, subsurface-unfilled, and bulk values. Second, the relative surface areas are calculated for all exposed crystallographic planes. Third, XPS and redox performance data are deconvoluted according to the relative surface areas of these planes. Correlations based on two independent empirical results from volumetric surface XPS, combined with sequential deep XPS and independent EELS data, confirm that these approaches provide quantitative determinations of the different oxygen vacancy concentrations. Critically, the redox/photocatalytic performance depends not on the total oxygen vacancy concentration but on the concentration of the active sites on each plane in the form of subsurface-unfilled oxygen vacancies. This is verified by the pH-dependent performance, which can be increased significantly by exposing these vacancies to the surroundings. These approaches have significance to the design and engineering of semiconducting materials exposed to the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.