Abstract

Converter slag contains free lime (CaO) and unstable iron oxides (FeO, FeOOH) that may lead to expansive self-destruction. A typical industry practice for converter slag has been stabilization by steam curing and autoclaving; however, the stabilization can only reach the surface, and not the inside, of slag particles. A new method is proposed in this study to stabilize the converter slag by heating at a low temperature. After magnetic separation, specimens of converter slag were subjected to heating for 2 h at a temperature of 500°C, resulting in a decrease of free lime content irrespective of the particle size. This effect was attributed to the formation of Ca2Fe9O13 and complicated apatite groups owing to the heating. The iron oxides in the converter slag were analyzed by X-ray photoelectron spectra. It was found that after heating, the unstable FeO (wustite) content decreased and an oxidized α-Fe2O3 (hematite) increased. This led to the prevention of the iron-induced expansion. The rate of heat liberation by the free lime in converter slag was smaller than that of the reagent CaO. This suggests that the presumed free lime is in a different form based on the Ca bond energy in the surface of slag particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.