Abstract

A multi-technique study devoted to investigate the surface features of nanosized hydroxyapatite (HA) was carried out. UHR-TEM observation provided evidence that HA nanoparticles are constituted by a crystalline core, elongated in the direction of the crystallographic c-axis, coated by an amorphous layer 1−2 nm thick. By means of IR spectroscopy and microgravimetry, the amount of water and hydroxy groups on the surface was evaluated. For the as-prepared material, it was found that the first hydration layer is mainly constituted by H2O molecules interacting through a coordinative bond with Ca2+ in a 1:1 ratio, while hydroxy groups account only for ca. 20% of surface hydration species. Outgassing at increasing temperatures up to 300 °C resulted in a complete surface dehydration, accompanied by a decrease of the capability to readsorb water. Possible changes of the local structure of surface Ca2+ ions were probed by IR spectra of adsorbed CO. The combination of these data with rehydration tests suggested that a significant part of surface Ca2+ ions, once dehydrated, can undergo a relaxation inward the surface, progressively more irreversible as the outgassing temperature increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.