Abstract

We employed a scanning probe-based lithography process on single-crystalline Si(100), Si(110), and Si(111) surfaces and studied the effects of crystallographic surface structures on mechanochemical etching of silicon in liquid water. The facet angle and etching rate of the mechanochemical process were different from those of the purely chemical etching process. In liquid water, the shape of the mechanochemically etched nanochannel appeared to be governed by thermodynamics of the etched surface, rather than stress distribution. Analyzing the etch rate with the mechanically assisted Arrhenius-type kinetics model showed that the shear-induced hydrolysis activity varies drastically with the crystallographic structure of silicon surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.