Abstract
To understand the effect of headgroups (i.e., sulfur and selenium) on surface structure, adsorption states, and thermal desorption behaviors of self-assembled monolayers (SAMs) on Au(111), we examined methanethiolate (CH3–S, MS) and metheneselenolate (CH3–Se, MSe) monolayers formed from dimethyl disulfide (DMDS) and dimethyl diselenide (DMDSe) molecules by ambient vapor-phase deposition. Scanning tunneling microscopy imaging revealed that DMDS molecules on Au(111) after a 1 h deposition form MS monolayers containing a disordered phase and an ordered row phase with an inter-row spacing of 1.51 nm, whereas DMDSe molecules form long-range-ordered MSe monolayers with a (√3 × 3√3)R30° structure. X-ray photoelectron spectroscopy measurements showed that MS or MSe monolayers chemisorbed on Au(111) were formed via S–S bond cleavage of DMDS or Se–Se bond cleavage of DMDSe. On the other hand, we monitored three main desorption fragments for MS and MSe monolayers using TDS monomers (CH3S+, CH3Se+), parent mass speci...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.