Abstract

Metal organic chemical vapour deposition of BaTiO3 using Ba(tmhd)2, Ti(OC3H7)4 and N2O, where tmhd equals 2,2,6,6-tetramethyl-3,5-heptanedionate, via pyrolysis at relatively low temperatures (∼370‡C) was performed in order to produce BaTiO3 insulator gates. Scanning electron microscopy showed that the surfaces of the BaTiO3 films had very smooth morphologies. Atomic force microscopy showed that the BaTiO3 thin film was polycrystalline. X-ray diffraction results indicated that BaTiO3 crystalline films grew on Si(100) with [110] orientation. High resolution transmission electron microscopy measurements showed that the BaTiO3 films were polycrystalline, and an interfacial layer in the BaTiO3/Si interface was formed. The stoichiometry and atomic structure of the BaTiO3 films were investigated by Auger electron spectroscopy and transmission measurements, respectively. Room temperature capacitance-voltage measurements clearly revealed metal-insulator-semiconductor behaviour for samples with BaTiO3 insulator gates, and interface state densities at the BaTiO3/p-Si interface were approximately high, 1011 eV−1 cm−2, at the middle of the Si energy gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.