Abstract

Surface stress is one of the most considerable reasons which cause extraordinary mechanical responses of nanomaterials and nanostructures due to the high surface to volume ratio of the systems at this submicron size. In the present study, the free vibration characteristics of nanoplates including surface stress effects are investigated based on the continuum modeling approach. To this end, Gurtin–Murdoch continuum elasticity approach is incorporated into the different types of plate theory namely as classical plate theory (CLPT) and first-order shear deformation theory (FSDT) to develop non-classical continuum plate models for free vibration analysis of the nanoplates including surface stress effects. Closed-form analytical solution accounting for the influence of surface stress on the vibrational behavior of nanoplates is derived. Selected numerical results are given to quantitatively assess the surface stress effects on the natural frequencies of the nanoplates. It is found that the difference between the results predicted by the classical and non-classical solutions relies on the sign and magnitude of the surface elastic constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.