Abstract

The prime aim of the current study is to investigate the pull-in instability characteristics of hydrostatically and electrostatically actuated circular nanoplates including surface stress effect. Gurtin–Murdoch elasticity theory is incorporated into the classical plate theory to develop a non-classical plate model considering surface stress effect. The governing size-dependent differential equations of a hydrostatically and electrostatically actuated circular nanoplate are discretized along with simply-supported and clamped boundary conditions using the generalized differential quadrature (GDQ) method. Selected numerical results are given to indicate the capability of the present size-dependent plate model for predicting the normalized pull-in voltage and pull-in hydrostatic pressure of nanoplates with inclusion surface stress effect. It is found that the pull-in phenomenon of actuated nanoplate is strongly size-dependent. The results indicate that surface stress effect plays a more significant role in the pull-in phenomenon of nanoplates of lower thicknesses. This investigation might be helpful to evaluate the mechanical characteristics of electrostatical actuators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.