Abstract
This study aimed to explore the psychophysical bases of multisensory surface stickiness perception by investigating how sensitively humans perceive different levels of stickiness intensity conveyed by auditory, tactile, and visual cues. First, we sorted five different sticky stimuli by perceived intensity in ascending order for each modality separately and evaluated the discrimination sensitivities of each participant using a fitted psychometric curve. Results showed that perceptual intensity orders were not identical to physical intensity order and that the sequential order of perceived intensities for different modalities was inconsistent. Moreover, estimated perceptual sensitivities to surface stickiness indicated that auditory cues result in better discrimination sensitivity than tactile and visual cues. Second, we calculated the relative perceptual distances of stickiness intensities using multidimensional scaling. A follow-up statistical test demonstrated that the perceptual mapping of vision and touch are similar but that auditory perception is different. These results suggest that the discriminability of stickiness intensity is best served by auditory cues and that texture information processing in the auditory domain is distinctive from that of other modalities.
Highlights
To interact effectively with surrounding objects, humans need to acquire surface texture information from objects using different sensory modalities
We investigated how humans perceive intensity information regarding surface stickiness when it is conveyed via auditory, tactile, and visual cues
The results indicate that auditory cues resulted in better discriminative sensitivity than tactile and visual cues
Summary
To interact effectively with surrounding objects, humans need to acquire surface texture information from objects using different sensory modalities. It has been demonstrated that tactile information is essential in perceiving the characteristics of surface texture (Lederman and Klatzky, 2009) and auditory cues play important roles in texture discrimination tasks (Lederman and Abbott, 1981; Lederman et al, 2002; Drewing et al, 2004). Based on these previous studies, there appears to be no fixed sensory dominance for texture perception and it seems that sensory dominance is largely dependent on specific aspects of surface texture, e.g., particle size of rough surfaces (Lederman and Klatzky, 2004).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.