Abstract

Sodium dodecyl sulfate (SDS) effects at the electrified p- and n-GaAs(100)/H2SO4 interfaces were investigated by EIS, XPS and AFM. XPS data revealed that under the open circuit conditions, SDS adsorption on GaAs(100) results in a protective overlayer which prevents the further oxidation in air of both types of semiconductor surfaces. The dopant nature is, however, decisive for the way of bonding the surfactant molecule to the surface. At the p-doped substrate, SDS adsorbs mainly at As sites by its hydrocarbon tail and by the anion head to the Ga sites at the n-doped one. Although the surfactant behaves as a dipole under the applied potential control, the dopant type plays a key role in the SDS interaction with GaAs(100) electrodes too. EIS data evidenced that SDS interaction with n-GaAs(100) electrode brings a pronounced decrease of the capacitive contribution of the surface states and a shift of the flatband potential to less negative values, unlike the p-doped one, where no significant change in its electronic properties was observed. These results were rationalized in terms of surface states- and field-effects operating at the electrified interfaces under discussion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.