Abstract

Wide‐bandgap semiconductor nanowires with surface defect emission centers have the potential to be used as sensitive thermometers and optical probes. Here, we show that the green luminescence of multiferroic BiFeO3 (BFO) nanowires shows an anomalous negative thermal quenching (NTQ) with increasing temperatures. The release of trapped carriers from localized surface defect states is suggested as the possible mechanism for the increased green luminescence which was experimentally observed at elevated temperatures. A reasonable interpretation of the photoluminescence (PL) processes in BFO nanowires is achieved, and the activation energies of the PL quenching and thermal hopping are deduced. Negative thermal quenching of BFO nanowires provides a new strategy for optical thermometry at higher temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.