Abstract
Because of their high aspect ratio, nanostructures are particularly susceptible to effects from surfaces such as slow electron trapping by surface states. However, nonequilibrium trapping dynamics have been largely overlooked when considering transport in nanoelectronic devices. In this study, we demonstrate the profound influence of dynamic trapping processes on transport in InAs nanowires through an investigation of the hysteretic and time-dependent behavior of the transconductance. We observe large densities (∼1013 cm-2) of slow surface traps and demonstrate the ability to control and permanently fix their occupation and charge through electrostatic manipulation by the gate potential followed by thermal deactivation by cryogenic cooling. Furthermore, we observe a transition from enhancement- to depletion-mode and a 400% change in field-effect mobility within the same device when the initial gate voltage and sweep rate are varied, revealing the severe impact of electrostatic history and dynamics on InAs nanowire field-effect transistors. A time-dependent model for nanowire transconductance based on nonequilibrium carrier population dynamics with thermally activated capture and emission was constructed and showed excellent agreement with experiments, confirming the effects to be a direct result of the dynamics of slow surface traps characterized by large thermal activation barriers (∼ 700 meV). This work reveals a clear and direct link between the electrical conductivity and the microscopic interactions of charged species with nanowire surfaces and highlights the necessity for considering dynamic properties of surface states in nanoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.