Abstract
Amorphous Ge nanoparticles with the particle size of approximately 10 nm were prepared by capping butyl groups and were characterized using XAS, TEM, FT-IR reflectance, and electrochemical cycling. The XAS results for the first-cycle Ge nanoparticles exhibited either a little particle aggregation after reformation of the Ge-Ge metallic bond or reformation of Ge-Ge metallic bond followed by a little particle aggregation. More interestingly, butyl groups, being electrochemically stable, remained after cycling, and the quantum mechanical calculation of the thermodynamic energy of the reaction using the GAMESS (General Atomic and Molecular Electronic Structure System) program suggested the formation of a very stable surface Ge-C bond that cannot be easily subjected to the subsequent chemical reactions. Initial charge capacity is 1470 mAh/g with an irreversible capacity ratio of 12%; no capacity fading was observed out to 30 cycles. Even at 5 C rate discharging, capacity retention was 98%, compared to that at 0.2 C rate discharging. In addition, the capacity was fully recovered at 0.2 C rate cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.