Abstract

Motility in mycobacteria was described for the first time in 1999. It was reported that Mycobacterium smegmatis and Mycobacterium avium could spread on the surface of solid growth medium by a sliding mechanism and that the presence of cell wall glycopeptidolipids was essential for motility. We recently reported that Mycobacterium vaccae can also spread on growth medium surfaces; however, only smooth colonies presented this property. Smooth colonies of M. vaccae do not produce glycopeptidolipids but contain a saturated polyester that is absent in rough colonies. Here, we demonstrate that Mycobacterium chubuense, Mycobacterium gilvum, Mycobacterium obuense, and Mycobacterium parafortuitum, which are phylogenetically related to M. vaccae, are also motile. Such motility is restricted to smooth colonies, since natural rough mutants are nonmotile. Thin-layer chromatography analysis of the content of cell wall lipids confirmed the absence of glycopeptidolipids. However, compounds like the above-mentioned M. vaccae polyester were detected in all the strains but only in smooth colonies. Scanning electron microscopy showed great differences in the arrangement of the cells between smooth and rough colonies. The data obtained suggest that motility is a common property of environmental mycobacteria, and this capacity correlates with the smooth colonial morphotype. The species studied in this work do not contain glycopeptidolipids, so cell wall compounds or extracellular materials other than glycopeptidolipids are implicated in mycobacterial motility. Furthermore, both smooth motile and rough nonmotile variants formed biofilms on glass and polystyrene surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.