Abstract

Nanoparticles (NPs) of the well-known photocatalysts TiO2 and ZnO each doped with noble metals (NM = Au, Pd, or Pt) were synthesized by applying a thermosynthetic method, and the catalytic activities of the resulting six samples were compared. After characterizing them by using high-resolution photoemission spectroscopy (HRPES), we evaluated the catalytic effects of the samples the oxidation of 4-aminothiophenol (4-ATP) by using HRPES under UV illumination and on the oxidation of 4-ATP in aqueous solution by taking electrochemistry measurements. In addition, we determined the rates of conversion of CO to CO2 in the presence of these catalysts by using a residual gas analyzer under an ultra-high vacuum condition. As a result, we found a good positive correlation between the numbers of defect structures induced by the doped noble metals and the catalytic activity, and showed that Pd-TiO2 and Pt-ZnO NPs can act as efficient catalysts due to their relatively large number of defect structures and corresponding oxygen vacancies.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.