Abstract

Two-dimensional directed site percolation is studied in systems directed along the x-axis and limited by a free surface at y=\pm Cx^k. Scaling considerations show that the surface is a relevant perturbation to the local critical behaviour when k<1/z where z=\nu_\parallel/\nu is the dynamical exponent. The tip-to-bulk order parameter correlation function is calculated in the mean-field approximation. The tip percolation probability and the fractal dimensions of critical clusters are obtained through Monte-Carlo simulations. The tip order parameter has a nonuniversal, C-dependent, scaling dimension in the marginal case, k=1/z, and displays a stretched exponential behaviour when the perturbation is relevant. The k-dependence of the fractal dimensions in the relevant case is in agreement with the results of a blob picture approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.