Abstract
Integrating hematite nanostructures with efficient layer double hydroxides (LDHs) is highly desirable to improve the photoelectrochemical (PEC) water oxidation performance. Here, an innovative and facile strategy is developed to fabricate the FeTi-LDH overlayer decorated Fe2 O3 /Fe2 TiO5 photoanode via a surface self-transformation induced by the co-treatment of hydrazine and NaOH at room temperature. Electrochemical measurements find that this favorable structure can not only facilitate the charge transfer/separation at the electrode/electrolyte interface but also accelerate the surface water oxidation kinetics. Consequently, the as-obtained Fe2 O3 /Fe2 TiO5 /LDH photoanode exhibits a remarkably increased photocurrent density of 3.54mAcm-2 at 1.23V versus reversible hydrogen electrode (RHE) accompanied by an obvious cathodic shift (≈140mV) in the onset potential. This work opens up a new and effective pathway for the design of high-performance hematite photoanodes toward efficient PEC water oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.