Abstract

Electrospun polymeric nanofibrous membranes are emerging as the promising substrates for preparation of flexible SERS nanosensors due to their intrinsic nanoscale surface roughness, easy scalability as well as rich surface reactivity. Although the nanofiber membranes prepared from high performance thermoplastics exhibit good mechanical stability, the SERS nanosensors based on these substrates normally have lower signal-to-noise ratio because of the interference from background Raman signals of aromatic moieties. Herein, we synthesized an optically transparent polyurethane (PU) and rigid polyarylene ether amidoxime (PEA), which were electrospun into core-shell nanofibers membranes with a “beads-on-web” morphology. Furthermore, the PU-PEA membranes were coated with ultra-thin silver layer and thermally annealed to prepare the flexible SERS nanosensor without any background noises. In addition, the Raman enhancement of SERS nanosensor can be readily improved by tuning of PU-PEA composition, silver thickness as well as thermal annealing temperature. Finally, the optimized SERS nanosensor enables label-free detection of sulfamethoxazole as low as 0.1 nM with a good reproducibility and detection performance in real water sample. Meanwhile, the optimized SERS nanosensor shows long term anti-biofouling capacity. Thanks to its facile fabrication, competitive analytical performance and resistance to biofouling, the current work basically open new way for design of flexible SERS nanosensors for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.