Abstract

Quantification of X‐ray photoelectron spectroscopy (XPS) data is often limited by the heterogeneous nature of the material surface. However, it is often the case that heterogeneous material contains areas within the analyzed area that are effectively homogeneous. In this Insight note, concepts, and methods used to analyze both XPS data are presented to extract both spatial and spectral information from heterogeneous surfaces. These concepts and methods are applied to a specific material surface that contains three chemical compounds separated spatially. The analysis entails converting XPS image data to spectral data and is designed to highlight the potential of XPS imaging in revealing compositional information correlation with spatial information. Properties of algorithms used to evaluate XPS images and spectra are described to outline their application to image data. A case study of an imaging XPS data set is presented that demonstrates how poor signal‐to‐noise images, where the signal is recorded for 4 s per image, are still open to analysis yielding useful information. Ultimately, the methods presented here will aid in interpreting complex XPS data obtained from spatially complex materials often obtained during extensive cycling, such as conventional or electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.