Abstract

Titanium alloys have become an indispensable material for all walks of life because of their excellent strength and corrosion resistance. However, grinding titanium alloy is exceedingly challenging due to its pronounced material characteristics. Therefore, it is crucial to create a theoretical roughness prediction model, serving to modify the machining parameters in real time. To forecast the surface roughness of titanium alloy grinding, an improved radial basis function neural network model based on particle swarm optimization combined with the grey wolf optimization method (GWO-PSO-RBF) was developed in this study. The results demonstrate that the improved neural network developed in this research outperforms the classical models in terms of all prediction parameters, with a model-fitting R2 value of 0.919.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.