Abstract
In finishing end milling, not only good accuracy but also good roughness levels must be achieved. Therefore, determining the optimum cutting levels to achieve the minimum surface roughness is important for it is economical and mechanical issues. This paper presents the optimization of machining parameters in end milling processes by integrating the genetic algorithm (GA) with the statistical approach. Two objectives have been considered, minimum arithmetic mean roughness (Ra) and minimum Root-mean-square roughness (Rq). The mathematical models for the surface roughness parameters have been developed, in terms of cutting speed, feed rate, and axial depth of cut by using Response Methodology Method (RSM). Due to complexity of this machining optimization problem, a multi objective genetic algorithm (MOGA) has been applied to resolve the problem, and the results have been analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.