Abstract

In this paper, the combined effect of surface roughness and bubbles content on the hydrodynamic performance of journal bearings is studied. In the analysis, it is assumed that the bearing and shaft surfaces are covered with homogeneous isotropic roughness, the air bubbles are evenly distributed through the lubricant and the bubble size is very small. The modified Reynolds equation governing the pressure generation in the bearing gap for compressible fluid is solved simultaneously with the energy equation. Temperature and pressure distributions, coefficient of friction, bearing load capacity and attitude angle as affected by surface roughness, bubble content and some bearing parameters are presented. Results showed that the bearing load carrying capacity is higher at higher values of average roughness and higher bubble content as a direct consequence of the higher pressure values attained, and the average roughness and the bubbles content had no significant effect on the attitude angle. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call