Abstract

A direct Monte Carlo model is developed to simulate secondary electron emission from beryllium with a flat surface and Gaussian-ripple surfaces. The calculated electron yield and energy distribution of secondary electrons are in reasonable agreement with the experimental data. The emphasis is in this study put on the effect of surface roughness on secondary electron emission. The number of secondary electrons emitted largely depends on the position of bombardment of primary electrons on the ripple surface. The energy distribution of secondary electrons emitted from the ripple surface shifts towards low-energy side in comparison with the distribution for the flat surface. The over-cosine and gourd-shaped angular distributions, depending on the position of bombardment, are calculated for emission angle of electrons from the ripple surface; the distribution for the flat surface agrees quite well with the cosine distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call