Abstract

AbstractOptical properties of two‐fluorinated polysiloxane‐co‐polyimide (PI‐PDMS and 3‐(aminopropyl)triethoxysilane [PI‐APTES]) were investigated based on their molecular structure and compared with the pure PI at 1,550 nm radiation. The refractive indexes and birefringence of the copolymers were reduced which is attributable to the chain flexibility as substantiated from the differential scanning calorimetry result. They are highly transparent at near infrared (NIR) region with light transmittance above 90% at visible region while displaying excellent thermal stability up to 456°C. Asymmetry planar waveguides was fabricated which recorded a respectable low optical loss 0.020 dB/cm for pure PI, 0.042 dB/cm for PI‐PDMS, and 0.066 dB/cm for PI‐APTES, respectively. Despite proving low NIR absorption and low birefringence, extrinsic factor namely surface roughness was accounted as affecting the higher optical loss in polyimide siloxane copolymer compared to pure PI. The excellent thermal and optical properties displayed by these series of material established their viable application as waveguide material at 1,550 nm wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.