Abstract
This work is an examination of potential uses of multiangular remote sensing imagery for mapping and characterizing sea ice and ice sheet surfaces based on surface roughness properties. We use data from the Multi-angle Imaging SpectroRadiometer (MISR) to demonstrate that ice sheet and sea ice surfaces have characteristic angular signatures and that these angular signatures may be used in much the same way as spectral signatures are used in multispectral classification. Three case studies are examined: sea ice in the Beaufort Sea off the north coast of Alaska, the Jakobshavn Glacier on the western edge of the Greenland ice sheet, and a region in Antarctica south of McMurdo station containing glaciers and blue-ice areas. The MISR sea ice image appears to delineate different first-year ice types and, to some extent, the transition from first-year to multiyear ice. The MISR image shows good agreement with sea ice types that are evident in concurrent synthetic aperture radar (SAR) imagery and ice analysis charts from the National Ice Center. Over the Jakobshavn Glacier, surface roughness data from airborne laser altimeter transects correlate well with MISR-derived estimates of surface roughness. In Antarctica, ablation-related blue-ice areas, which are difficult to distinguish from bare ice exposed by crevasses, are easily detected using multiangular data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.