Abstract

Drilling is an essential secondary process for near net-shape of hybrid composite as to achieve the required dimensional tolerances prior to final application. Dimensional tolerance is often influenced by the surface integrity or surface roughness of the workpart. Thus, this paper aims to employ the Taguchi and response surface methodologies in minimizing the surface roughness of drilled carbon-glass hybrid fibre reinforced polymer (CGCG) using tungsten carbide, K20 drill bits. The effects of spindle speed, feed rate and tool geometry on surface roughness were evaluated and optimum cutting conditions for minimizing the aforementioned response was determined. Subsequently, response surface methodology (RSM) was utilised in finding the empirical relationships between experimental parameters and surface roughness based on the Taguchi results. The experimental analyses reveal that surface roughness is greatly influenced by feed rate and tool geometry rather than the spindle speed. This is due to the increment of feed that attributed to the increased strain rate and hence, deteriorated the surface roughness of the hybrid composite. The predicted results (via regression model) and theoretical results (via additivity law) were in good agreement with experiment results. This indicates that the regression model from response surface methodology (RSM) can be used to predict the surface roughness in machining of CGCG hybrid composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call