Abstract

Ni films were electrodeposited onto polycrystalline gold substrates mounted on a rotating disc electrode. The effects of rotation speed, film thickness and current density on the kinetic roughening and magnetic properties of the films were investigated. The film surface roughness was imaged using an atomic force microscope (AFM). The results indicate that the film roughness increases as the film thickness or deposition current density increases. We found that the electrodeposited Ni films exhibit anomalous scaling since both local and large-scale roughnesses show a power-law dependence on the film thickness. The effect of electrode rotation speed on the film surface roughness was also investigated. Scanning electron microscopy studies (SEM) had a good agreement with the AFM results. The average crystalline size of the film surfaces is also calculated from X-ray line broadening using (220) peak and Debye–Scherrer formula. The obtained results agree with that of AFM and SEM. The Ni thin films which are grown at different deposition current densities and rotation speeds exhibit in-plane magnetization with coercivities less than 110 Oe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.