Abstract

For the microfluidic chip, the surface roughness of the chamber sidewall is an important parameter in estimating its quality. In this work, the chambers of the polymethyl methacrylate (PMMA)-based microfluidic chip were fabricated by CO 2 laser cutting, and then the surface roughness of the sections cut using different laser parameters and ambient temperature was studied by a non-contact 3D surface profiler. Our observation shows that the surface roughness results primarily from the residues on the laser-cut edge, which are produced by the bubbles bursting. To reduce the surface roughness of the cut section, a new approach is proposed, that is preheating the PMMA sheet to a suitable ambient temperature during laser processing. The results indicate that at a preheat temperature of 70–90 °C, the surface roughness resulting from the cut would be reduced. In our experiment, the best result was that the arithmetical mean roughness is R a = 100.86 nm when the PMMA sheet was heated to 85 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.