Abstract

Silicon carbide (SiC) devices have the potential to yield new components with functional capabilities that far exceed components based on silicon devices. Selective doping of SiC by ion implantation is an important fabrication technology that must be completely understood if SiC devices are to achieve their potential. One major problem with ion implantation into SiC is the surface roughening that results from annealing SiC at the high temperatures which are needed to activate implanted acceptor ions, boron or aluminum. This paper examines the causes and possible solutions to surface roughening of implanted and annealed 4H-SiC. Samples consisting of n-type epilayers (5 × 1015 cm−3, 4 µm thick) on 4H-SiC substrates were implanted with B or Al to a total dose of 4 × 1014 cm−2 or 2 × 1015 cm−2, respectively. Roughness measurements were made using atomic force microscopy. From the variation of root mean square (rms) roughness with annealing temperature, apparent activation energies for roughening following implantation with Al and B were 1.1 and 2.2 eV, respectively, when annealed in argon. Time-dependent activation and surface morphology analyses show a sublinear dependence of implant activation on time; activation percentages after a 5 min anneal following boron implantation are about a factor of two less than after a 40 min anneal. The rms surface roughness remained relatively constant with time for anneals in argon at 1750°C. Roughness values at this temperature were approximately 8.0 nm. Annealing experiments performed in different ambients demonstrated the benefits of using silane to maintain good surface morphology. Roughnesses were 1.0 nm (rms) when boron or aluminum implants were annealed in silane at 1700°C, but were about 8 and 11 nm for B and Al, respectively, when annealed in argon at the same temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.