Abstract

Antistatic polymers are required to dissipate static charges safely from component surfaces. Our overall objective has been to develop cost‐effective flame‐retarded and antistatic polyethylene compounds suitable for rotomolding. This communication considers the surface resistivity and mechanical properties of rotationally molded linear low‐density polyethylene (LLDPE)/graphite composites containing natural Zimbabwean graphite, expandable graphite, or expanded graphite. Dry blending and melt compounding were employed to obtain antistatic composites at the lowest graphite contents. Dry blending was found to be an effective mixing method for rotomolding antistatic LLDPE/graphite composites, thereby eliminating an expensive compounding step. Dry‐blended Zimbabwean graphite composites showed the lowest surface resistivity at all graphite contents, with a surface resistivity of 105 Ω/square at 10 wt% loading. Although rotomolded powders obtained following the melt compounding of Zimbabwean graphite exhibited higher resistivity values, the variability was much lower. Injection molding resulted in surface resistivity values above 1014 Ω/square for all compositions used. The rotomolded composites exhibited poor mechanical properties, in contrast to injection‐molded composites. The Halpin‐Tsai model showed good fits to the tensile modulus data for injection‐molded Zimbabwean and expandable graphite. J. VINYL ADDIT. TECHNOL., 19:258–270, 2013. © 2013 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.