Abstract

Au-Zn catalysts have previously been shown to promote the hydrogenation of CO2 to methanol, but their active state is poorly understood. Here, silica-supported bimetallic Au-Zn alloys, prepared by surface organometallic chemistry (SOMC), are shown to be proficient catalysts for hydrogenation of CO2 to methanol. In situ X-ray absorption spectroscopy (XAS), in conjunction with gas-switching experiments, is used to amplify subtle changes occurring at the surface of this tailored catalyst during reaction. Consequently, an Au-Zn alloy is identified and is shown to undergo subsequent reversible redox changes under reaction conditions according to multivariate curve resolution alternating least-squares (MCR-ALS) analysis. These results highlight the role of alloying and dealloying in Au-based CO2 hydrogenation catalysts and illustrate the role of these reversible processes in driving reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.