Abstract

The Delaunay triangulation is an established method to define neighborhood relations in multi-particle systems. In particular, this method was employed for interacting multi-cellular systems in Biology. The extension of this method to a sub-cellular level that considers the membrane and the inner structure of cells is not straight forward and subject of this article. It is the objective to use a three-dimensional Delaunay-triangulation as a basis for the definition of a triangulation of a subset of particles that form a surface. An essential problem of this objective is the conservation of the number of particles belonging to the surface. This excludes established surface reconstruction algorithms. The presented algorithm allows the definition of a triangulation within a subset of particles attributed to a surface without the deletion of particles. A particular challenge is the deletion of connection that infer three-dimensional structures in the surface. The presented method is suitable for many configurations. Its performance and its limitations are analyzed and discussed. The developed algorithm for the reconstruction of connections in a surface is suitable to be used for simulations of biological cells because of the inherent conservation of the number of particles attributed to the membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.