Abstract
Recently, a new bivariate simplex spline scheme based on Delaunay configuration has been introduced into the geometric computing community, and it defines a complete spline space that retains many attractive theoretic and computational properties. In this paper, we develop a novel shape modeling framework to reconstruct a closed surface of arbitrary topology based on this new spline scheme. Our framework takes a triangulated set of points, and by solving a linear least-square problem and iteratively refining parameter domains with newly added knots, we can finally obtain a continuous spline surface satisfying the requirement of a user-specified error tolerance. Unlike existing surface reconstruction methods based on triangular B-splines (or DMS splines), in which auxiliary knots must be explicitly added in advance to form a knot sequence for construction of each basis function, our new algorithm completely avoids this less-intuitive and labor-intensive knot generating procedure. We demonstrate the efficacy and effectiveness of our algorithm on real-world, scattered datasets for shape representation and computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.