Abstract

The photocatalytic activity of plasmonic Au/TiO2 nanoparticles (NPs) is dependent on distances between Au and TiO2. The preparation of plasmonic NPs is still a challenge because of an inherent lattice mismatch on heterogeneous interfaces. The combination between Au and TiO2 NPs often exhibits physical adsorption, which affect block the electron transferring process by photo-induction from TiO2 to Au NPs and weaken the photocatalytic activity. In this work an approach for preparing plasmonic Au/TiO2 NPs with perfect hetero-interface was proposed based on reconstruction of anatase TiO2 with (101) surface and in-situ reduction of Au NPs. Under UV-irradiation, anatase TiO2 NPs with a high percentage of (001) facets in formaldehyde solution undergo photochemical reactions to reconstruct the (101) surface of TiO2 and simultaneously allow polyformaldehyde to absorb on the same surface. Thus, Au(OH)-4 ions could be adsorbed on the (101) surfaces of TiO2 through electrostatic adsorption and reduced to form nano-Au in situ after recrystallization at 180 °C. The high-resolution transmission electron microscopy (HRTEM) images showed clear nanoscale lattice transition on heterogeneous interfaces of Au/TiO2 NPs. The surface structure of TiO2 NPs and the growth mechanism of Au/TiO2 NPs were evaluated with HRTEM, X-ray photoelectron spectra (XPS) and Fourier transform infrared spectroscopy (FTIR). It was demonstrated that the as-prepared plasmonic Au/TiO2 NPs had higher photocatalytic activity and corrosion resistance in comparison with primary TiO2 NPs by photo-electrochemical measurements. The reinforcing mechanism could be interpreted with Mott-Schottky analysis in terms of quantum mechanics. Our study implied that the reconstruction based synthesis may open up more opportunities to obtain lattice-mismatch nanomaterials for photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.