Abstract

Complete projection (360 degrees ) free-space fluorescence tomography of opaque media is poised to enable 3-D imaging through entire small animals in vivo with improved depth resolution compared to 360 degrees -projection fiber-based systems or limited-view angle systems. This approach can lead to a new generation of Fluorescence Molecular Tomography (FMT) performance since it allows high spatial sampling of photon fields propagating through tissue at any projection, employing nonconstricted animal surfaces. Herein, we employ a volume carving method to capture 3-D surfaces of diffusive objects and register the captured surface in the geometry of an FMT 360 degrees -projection acquisition system to obtain 3-D fluorescence image reconstructions. Using experimental measurements we evaluate the accuracy of the surface capture procedure by reconstructing the surfaces of phantoms of known dimensions. We then employ this methodology to characterize the animal movement of anaesthetized animals. We find that the effects of animal movement on the FMT reconstructed image were within system resolution limits (approximately 0.07 cm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.