Abstract

ABSTRACTThe equilibrium structure of a variety of Si1−xGex/Si heterostructures have been simulated by Molecular Dynamics, modeled by the Stillinger-Weber potential, to investigate the effect of strain on the surfaces of SiGe thin Alms. It was found that the strain in SiGe/Si(100) thin films was relaxed by the segregation of Ge to the surface. Rebonding of sub-surface atoms into dimers in the presence of a vacancy or cluster of vacancies above them was observed in the ensuing surface reconstruction. For SiGe/Si, the amount of “re-bonded missing dimers” in the top two layers increased with increasing Ge composition. But for Ge/Si(100), a V-shaped twinning defect was observed in the Ge thin film. To further investigate the effect of strain on surface reconstruction, bulk Si and Ge structures were also studied. For bulk Si, several rebonded missing dimers were found at the surface, while for bulk Ge(100), the surface showed a typical 2×1 reconstruction. All these findings corroborate recent experimental studies and theoretical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call