Abstract

Temperature programming of NO and C2H2 coadsorbed on Rh(111) gives rise to the desorption of a number of gases. Where H2, H2O, CO2 and N2 are the main products at low C2H2 coverages, significant amounts of HCN, CO and NO evolve at higher C2H4 coverages. Static SIMS indicates the formation of a large supply of adsorbed CN species, part of which desorbs as HCN, while the remainder decomposes and is responsible for delayed formation of N2. For the highest C2H4 coverages the majority of the initially adsorbed NO desorbs as HCN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.