Abstract

In the present study, the immersion behavior of two kinds of sintered HA with different Ca/P ratios in two different extracellular simulated solutions (Tris buffer and Hank's solutions) was investigated and compared. Results indicated that an as-received Ca-deficient HA (FHA) had a lower Ca/P ratio, larger linear shrinkage and higher density than a stoichiometric HA (MHA). When FHA powder was calcined at 900 degrees C, its Ca-deficient apatite structure was unstable and a significant amount of beta-TCP phase was formed. When heated to 1250 degrees C in air, the highly crystalline apatite structure of MHA was still stable without any noticeable decomposition. The FTIR spectra indicated that both immersed MHA and FHA in Hank's solution were gradually covered with a layer of precipitated apatite during immersion. When immersed in Tris buffer solution, neither HA showed significant changes in their FTIR spectra. SEM observation indicated that the precipitation rate on immersed FHA surface was much higher than that on MHA surface when immersed in Hank's solution. The weight loss and pH data confirmed the higher dissolution rate of FHA than MHA in Hank's solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.