Abstract

The adsorption and reaction of CO on a monolayer carbide and a bulk carbide, prepared on Mo(110), was studied with synchrotron-based XPS, TPD, and density-functional calculations using slab models. In the experiments on the monolayer carbide, we find two CO species at 140 K, with a saturation coverage of ∼0.7 ML, while on the bulk carbide, Mo2C, three molecular adsorption states are found, showing a similar total coverage of ∼0.7 ML at saturation. In addition, CO partly dissociates on both surfaces (monolayer carbide: 7%, bulk carbide: 15%). The calculations on the monolayer carbide show that the adsorption of CO on Mo sites is most stable. At increased coverages, several different adsorption sites on the monolayer carbide become possible. From the core level shifts, an assignment to the experimentally found species becomes available. Upon heating, we find on both carbides the competing processes of desorption, interconversion of different CO species, and dissociation of CO. The detailed quantitative anal...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call