Abstract

In this work, surface properties of wustite-based iron and iron‑cobalt catalysts were investigated. Measurements of hydrogen temperature-programmed desorption (TPD-H2) and surface area of active forms of catalysts were conducted after reduction of catalyst precursors (16 h) in pure hydrogen at various temperatures (450, 475, 500, 550 and 600 °C). The amount of cobalt in the catalyst structure and the number of adsorption sites relative to hydrogen were correlated with the activity for ammonia synthesis reaction. The presence of cobalt increased thermal resistance of the catalysts and at the same time their activity in ammonia synthesis reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call