Abstract

Saturn’s moon Titan was explored by the Cassini spacecraft from 2004 to 2017. While Cassini revealed a lot about this Earth-like world, its radar observations could only provide limited information about Titan’s liquid hydrocarbons seas Kraken, Ligeia and Punga Mare. Here, we show the results of the analysis of the Cassini mission bistatic radar experiments data of Titan’s polar seas. The dual-polarized nature of bistatic radar observations allow independent estimates of effective relative dielectric constant and small-scale roughness of sea surface, which were not possible via monostatic radar data. We find statistically significant variations in effective dielectric constant (i.e., liquid composition), consistent with a latitudinal dependence in the methane-ethane mixing-ratio. The results on estuaries suggest lower values than the open seas, compatible with methane-rich rivers entering seas with higher ethane content. We estimate small-scale roughness of a few millimeters from the almost purely coherent scattering from the sea surface, hinting at the presence of capillary waves. This roughness is concentrated near estuaries and inter-basin straits, perhaps indicating active tidal currents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.