Abstract

Abstract The surface properties of particles emitted from six selected coal-fired power and heating plants in Poland have been studied in this work for the first time. Samples were collected beyond the control systems. Surface composition of the size-distributed particles was obtained by photoelectron spectroscopy (XPS). The reflection of the smallest, submicron particles was also measured to calculate their specific/mass absorption. The surface layer of the emitted particles was clearly dominated by oxygen, followed by silicon and carbon. The sum of the relative concentration of these elements was between 85.1% and 91.1% for coarse particles and 71.8–93.4% for fine/submicron particles. Aluminum was typically the fourth or fifth, or at least the sixth most common element. The mass absorption of the submicron particles emitted from the studied plants ranged from 0.02 m2g-1 to 0.03 m2g-1. Only specific absorption obtained for the “Nowy Wirek” heating plant was significantly higher than in other studied plants probably because the obsolete fire grate is used in this heating plant. The obtained results suggest that the power/heating-plant-emitted fine particles contain less carbonaceous material/elemental carbon on their surfaces than those that are typical in urban air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.