Abstract

Various effects occur which can prevent attainment of the high Q’s and/or the high gradient fields necessary for the operation of radio-frequency (rf) superconducting cavities. One of these effects, multipactor, both causes the cavity to detune during filling due to resonant secondary electron emission at the cavity walls, and lowers the quality factor (Q) by dissipative processes. TiN deposited onto the high-field regions of room-temperature Al cavities has been used at the Stanford Linear Accelerator Center to successfully reduce multipactor in the past. We have therefore studied TiN and its companion materials, NbN, NbC, and TiC, all on Nb substrates under several realistic conditions: (1) as-deposited, (2) exposed to air, and (3) electron bombarded. The studied films (up to 14-nm thickness) were sputter deposited onto sputter-cleaned Nb substrates. Results indicate that all the materials tested gave substantially the same results. The maximum secondary electron yields for as-deposited films were reduced to nearly the preoxidized values after electron bombardment (2–3×1017 electrons cm−2 in the case of NbN and NbC). X-ray photoelectron spectroscopy analysis showed that the oxides (e.g., TiO2 in the case of TiN films) formed during air exposure were slightly reduced (converted to lower oxides) by the electron-beam exposure. Auger electron spectroscopy (AES) showed a slight reduction in the surface O concentration following beam exposure. These results suggest that the chemical nature of top surface layers is responsible for the substantial changes in secondary electron yield observed upon electron-beam exposures and that AES does not reflect this change strongly because of the difficulty in extracting chemical (versus elemental) information from AES. The results indicate that any of these films would be poor choices if simply deposited and exposed to air, but, in fact, the in situ electron bombardment which occurs during cavity operation serves to reduce the secondary electron yield and thereby causes a substantial reduction in multipacting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.