Abstract

Surface properties are important factors that determine the performance of ultrafiltration membranes. This study aimed to investigate the effects of clay addition on the surface properties and membrane permeability of PVDF (poly-vinylidene fluoride) membranes. Three types of clay with different particle size were used in this study, namely montmorillonite-MMT, bentonite-BNT and cloisite 15A-CLS. The PVDF-clay composite membranes were prepared by phase inversion method using PEG as additive. The hydrophobicity of membrane surface was characterized by contact angle. The membrane permeability was determined by dead- end ultrafiltration with a trans-membrane pressure of 2 bars. In contact angle measurement, water contact angle of composite membranes is higher than PVDF membrane. The addition of clays decreased water flux but increased of Dextran rejection. The PVDF-BNT composite membranes reach highest Dextran rejection value of about 93%. The type and particle size of clay affected the hydrophobicity of membrane surface and determined the resulting membrane structure as well as the membrane performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call