Abstract

Amplitude modulated full-field range-imagers are measurement devices that determine the range to an object simultaneously for each pixel in the scene, but due to the nature of this operation, they commonly suffer from the significant problem of mixed pixels. Once mixed pixels are identified a common procedure is to remove them from the scene; this solution is not ideal as the captured point cloud may become damaged. This paper introduces an alternative approach, in which mixed pixels are projected onto the surface that they should belong. This is achieved by breaking the area around an identified mixed pixel into two classes. A parametric surface is then fitted to the class closest to the mixed pixel, with this mixed pixel then being project onto this surface. The restoration procedure was tested using twelve simulated scenes designed to determine its accuracy and robustness. For these simulated scenes, 93% of the mixed pixels were restored to the surface to which they belong. This mixed pixel restoration process is shown to be accurate and robust for both simulated and real world scenes, thus provides a reliable alternative to removing mixed pixels that can be easily adapted to any mixed pixel detection algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.