Abstract

The use of bacteria as living vehicles has attracted increasing attentions in tumor therapy field. The combination of functional materials with bacteria dramatically facilitates the antitumor effect. Here, we presented a rationally designed living system formed by programmed Escherichia Coli MG1655 cells (Ec) and black phosphorus (BP) nanoparticles (NPs). The bacteria were genetically engineered to express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), via an outer membrane YiaT protein (Ec-T). The Ec-T cells were associated with BP NPs on their surface to acquire BP@Ec-T. The designed living system could transfer the photoelectrons produced by BP NPs after laser irradiation and triggered the reductive metabolism of nitrate to nitric oxide for the in situ release at tumor sites, facilitating the therapeutic efficacy and the polarization of tumor associated macrophages to M1 phenotype. Meanwhile, the generation of reactive oxygen species induced the immunogenic cell death to further improve the antitumor efficacy. Additionally, the living system enhanced the immunological effect by promoting the apoptosis of tumor cells, activating the effect of T lymphocytes and releasing the pro-inflammatory cytokines. The integration of BP NPs, MG1655 cells and TRAIL led to an effective tumor therapy. Our work established an approach for the multifunctional antitumor living therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.